Commit 4e518765 authored by 魏博昱's avatar 魏博昱

Update README.md

parent 7fc4ad53
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/deblurring-on-gopro)](https://paperswithcode.com/sota/deblurring-on-gopro?p=multi-stage-progressive-image-restoration) # DASR
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/deblurring-on-hide-trained-on-gopro)](https://paperswithcode.com/sota/deblurring-on-hide-trained-on-gopro?p=multi-stage-progressive-image-restoration) ## 1 项目背景
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/deblurring-on-realblur-r-trained-on-gopro)](https://paperswithcode.com/sota/deblurring-on-realblur-r-trained-on-gopro?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/deblurring-on-realblur-j-trained-on-gopro)](https://paperswithcode.com/sota/deblurring-on-realblur-j-trained-on-gopro?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/deblurring-on-realblur-r)](https://paperswithcode.com/sota/deblurring-on-realblur-r?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/deblurring-on-realblur-j-1)](https://paperswithcode.com/sota/deblurring-on-realblur-j-1?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/single-image-deraining-on-rain100h)](https://paperswithcode.com/sota/single-image-deraining-on-rain100h?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/single-image-deraining-on-rain100l)](https://paperswithcode.com/sota/single-image-deraining-on-rain100l?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/single-image-deraining-on-test100)](https://paperswithcode.com/sota/single-image-deraining-on-test100?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/single-image-deraining-on-test1200)](https://paperswithcode.com/sota/single-image-deraining-on-test1200?p=multi-stage-progressive-image-restoration)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/multi-stage-progressive-image-restoration/single-image-deraining-on-test2800)](https://paperswithcode.com/sota/single-image-deraining-on-test2800?p=multi-stage-progressive-image-restoration)
# Multi-Stage Progressive Image Restoration (CVPR 2021)
[Syed Waqas Zamir](https://scholar.google.es/citations?user=WNGPkVQAAAAJ&hl=en), [Aditya Arora](https://adityac8.github.io/), [Salman Khan](https://salman-h-khan.github.io/), [Munawar Hayat](https://scholar.google.com/citations?user=Mx8MbWYAAAAJ&hl=en), [Fahad Shahbaz Khan](https://scholar.google.es/citations?user=zvaeYnUAAAAJ&hl=en), [Ming-Hsuan Yang](https://scholar.google.com/citations?user=p9-ohHsAAAAJ&hl=en), and [Ling Shao](https://scholar.google.com/citations?user=z84rLjoAAAAJ&hl=en)
**Paper**: https://arxiv.org/abs/2102.02808
**Supplementary**: [pdf](https://drive.google.com/file/d/1mbfljawUuFUQN9V5g0Rmw1UdauJdckCu/view?usp=sharing)
> **Abstract:** *Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a two-faceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. For example, on the Rain100L, GoPro and DND datasets, we obtain PSNR gains of 4 dB, 0.81 dB and 0.21 dB, respectively, compared to the state-of-the-art.*
## Network Architecture
<table>
<tr>
<td> <img src = "https://i.imgur.com/69c0pQv.png" width="500"> </td>
<td> <img src = "https://i.imgur.com/JJAKXOi.png" width="400"> </td>
</tr>
<tr>
<td><p align="center"><b>Overall Framework of MPRNet</b></p></td>
<td><p align="center"> <b>Supervised Attention Module (SAM)</b></p></td>
</tr>
</table>
## Installation
The model is built in PyTorch 1.1.0 and tested on Ubuntu 16.04 environment (Python3.7, CUDA9.0, cuDNN7.5).
For installing, follow these intructions
```
conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
```
Install warmup scheduler
```
cd pytorch-gradual-warmup-lr; python setup.py install; cd ..
```
## Quick Run
To test the pre-trained models of [Deblurring](https://drive.google.com/file/d/1QwQUVbk6YVOJViCsOKYNykCsdJSVGRtb/view?usp=sharing), [Deraining](https://drive.google.com/file/d/1O3WEJbcat7eTY6doXWeorAbQ1l_WmMnM/view?usp=sharing), [Denoising](https://drive.google.com/file/d/1LODPt9kYmxwU98g96UrRA0_Eh5HYcsRw/view?usp=sharing) on your own images, run
```
python demo.py --task Task_Name --input_dir path_to_images --result_dir save_images_here
```
Here is an example to perform Deblurring:
```
python demo.py --task Deblurring --input_dir ./samples/input/ --result_dir ./samples/output/
```
## Training and Evaluation
Training and Testing codes for deblurring, deraining and denoising are provided in their respective directories.
## Results
Experiments are performed for different image processing tasks including, image deblurring, image deraining and image denoising.
### Image Deblurring
<table>
<tr>
<td> <img src = "https://i.imgur.com/UIwmY13.png" width="450"> </td>
<td> <img src = "https://i.imgur.com/ecSlcEo.png" width="450"> </td>
</tr>
<tr>
<td><p align="center"><b>Deblurring on Synthetic Datasets.</b></p></td>
<td><p align="center"><b>Deblurring on Real Dataset.</b></p></td>
</tr>
</table>
### Image Deraining
<img src = "https://i.imgur.com/YVXWRJT.png" width="900">
### Image Denoising
<p align="center"> <img src = "https://i.imgur.com/Wssu6Xu.png" width="450"> </p>
## Citation
If you use MPRNet, please consider citing:
@inproceedings{Zamir2021MPRNet,
title={Multi-Stage Progressive Image Restoration},
author={Syed Waqas Zamir and Aditya Arora and Salman Khan and Munawar Hayat
and Fahad Shahbaz Khan and Ming-Hsuan Yang and Ling Shao},
booktitle={CVPR},
year={2021}
}
## Contact 有的C臂机影像上有严重的噪声,影响了影像的后续处理,因此需要通过算法尽可能不影响图像清晰度的情况下减少噪声。
Should you have any question, please contact waqas.zamir@inceptioniai.org
## 2 实现功能
使用对比学习方法提取图像的衰退方法向量,使用该向量与原始低分辨率图像作为输入,得到高分辨率图像(分辨率*2)
## 3 环境
### 3.1 开发环境
windows10
python3.6
pytorch 1.1
cv2 4.5
### 3.2 运行环境
windows10
python3.6
pytorch 1.1
cv2 4.5
## 4 接口说明
### 4.1 外部接口
输入:原始图像张量,格式[Batch, channel, hight, width]
输出:去噪图像张量。格式[Batch, channel, hight, width]
### 4.2 内部接口
TODO
## 5 安装说明
### C++调用说明
调用例写于 MPR.cpp
## 6 许可证说明
此软件为商业版本,版权归<xxx>所有。禁止其他实体进行商业和科研使用;
请联系jingjun.gu@qq.com;
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment